

Disturbance management: Some insights from projects BLIXTEN I and II

Blekinge Tekniska Högskola Karlskrona, Sweden

Sai Prashanth Josyula

Johanna Törnquist Krasemann

Real-time railway timetable rescheduling

Components and actors in advanced real-time railway network management

Source: M. Joborn, J. Törnquist Krasemann, B. Thorslund, S. P. Josyula, Z. Ranjbar, T. Liden, M. Wahlborg, "Description of a decision support tool aimed at advanced Real Time Network Management and requirements for a demonstrator", 2020. (FR8Rail II Deliverable 3.2). <u>http://www.diva-portal.org/smash/record.jsf?pid=diva2:1510579</u>

Scope and research focus

Human-computer interaction

Disturbance management from Infrastructure Manager's perspective:

- □ Prioritizing a train over another
- Retiming trains
- □ Allocating alternative tracks

Global train rerouting Train cancelations, etc. Train crew schedules Rolling stock schedules

Disruptions

Some challenges

- ➤ How to model the problem?
- How to design and implement the algorithm?
- > How to analyze its applicability, strengths, and limitations?

State of the practice

> Only very few examples of computer algorithms for rescheduling

Regional lines in Italy (2011- ongoing).
Certain lines in Latvia (2017-ongoing).
A system in greater Oslo area (not in operation yet).

➢ In Sweden, disturbances are handled...

Source: Trafikverket. Permission to be used was given by Sandra Stefanovic, sektionschef vid tågtrafikledningen/DLC Malmö in Oct 23rd, 2017.

Research need: Evaluating algorithms

A wide range of solution approaches:

- Local rules and conflict resolution principles (e.g., FCFS)
- Various mathematical formulations solved with exact methods (e.g., using commercial solvers)
- Problem decomposition techniques:
 - Decomposition in time, e.g., a rolling-time horizon
 - Decomposition in space, e.g., making the decisions at different levels and solving iteratively.
- > Algorithmic approaches, including a combination of above.

All approaches have their own strengths and limitations!

6

Results and conclusions from a Swedish case study

- The railway stretch between Karlskrona–Malmö, via Kristianstad and Hässleholm
- 90 sections, 42 stations
- Mixed traffic: Regional passenger trains, freight trains, long-distance passenger trains

Blekinge Kustbana

Source: Page 10 of the document *Blekinge kustbana, fördjupad utredning för etapp 2* <u>https://www.trafikverket.se/contentassets/a0</u> <u>a574ba8c6743bd87cd23febdd07a98/fordjupa</u> <u>d utredning trafikverket bkbe2 signerad.pdf</u>

Train timetable

	15:50 1	6:00	16:10 16:20	16:30	16:40	16:50	17:00	17:10 17:20	17:30	17:40	17:50	18:00	18:10	18:20	18:30	18:40	18:50 1	9:00	19:10	19:20	19:30	19:40	19:50 20	:00 20:1	0 20:):20 20
CK-BÅA			1052/8649 86	356	4622 1	097	/	1058 8653		8660	103		1064865	7		86641	109		107866	1	4	668	115	ſc	76	8665
BÅA-GUA		105	2 8649	8656	462	2 097	10	8653		80	60 03	10	648657			86	814109	ho	708661			8668	1115	1076	/	8665
GUA-NÄT		1052				1097	/				1103	1064					1109						1115/	076		
NÄT-NÄT_L3		1091				1058	1097				1064	1103					1070	1109					1076	1115		
NÄT_L3-RB		109	1			1058	109	7			1064	11	3				1070	110	9				1076	11115		
RB-RB_L3			1091		1058			1097		1064			1103			1070			1109			107	6	1	115	
RB_L3-BHB			1091	<u>k</u>	58			1097	h	64			11	03	/	070			/11	09		1076			1115	5
BHB-ÂMN			1091	1058				1097	1064					1103	1070					1109	1076					1115
ÅMN-КН			1058	1091				1064	1097					1070	1103		_			107	6 110					108
KH-VRU		197	75 1058		1091	974	19	77 1064		097	976	19	79	070	\	1103	978	198	31	1076		1109			10	082
VRU-MRU			1976058		109974			19771064		10997	3		1979/107)		11097	8		1981 107	6		1109			1082	
MRU-SAK			058 1975		974 109	1	/	1064 1977		976 10	97		1070 19	79	/	1978 11	03		1078 1	981			109		082	
SAK-SAK_L3		1058	1975	1974		1091	106	4 1977	197	\$	1097	10	70	1979	197	8	1103	10	76	1981			1109	1082		
SAK_L3-SÖG		1058	1975	1974		109	1064	197	1976		109	7 1070		1979	1978		110:	3 1076		198	31		1105	1082		
SÖG-BML		1085	1974	1975	627:		4 1091	1976	1977		ſĊ	701097		1978	1979		10	76 1103			1981		108	21109		
BML-BML1		1085	1974	19	75	5270 8 4	109	1 1976	19	77	1070	10	97	978	19	79	1076	11	03		1	981	1082	1109	1982	.2
BML1-FKI1		10	85 1974		1975	064 6:	273 1	091 1976		977	1070		1097 19	78	\	1979	1076		1103			1981	1082	11	91982	
FKI1-FKI			108574		197506	4		1 096 873		197710	70		1 097 8			197910	76		1103			1981	082	/19	1209	
FKI-CRGB		19	41085		1064	975	19	76 1091 6273		fox	977	19	78 1097			107	a 979		110	8		10	21981	1982	1109	
CRGB-CR		1974	1085		1064	1975	1976	1091		1070	61715977	1978	10	97		1076	1979		1	103		1082	1981	1982	110	9

A calibrated version of the train timetable from October 2016 for a weekday.

Timetable from Karlskrona to Kristianstad (4:00 PM to 9:00 PM)

Train timetable (contd.)

	15:50	16:00	16:10	0	16:20) .	16:30)	16:4	0	16	6:50	17	7:00)	17:	10	1	17:2	20	17	7:30	0	17	7:40		17:	50	1	8:00	1	18:	10	18	3:20	1	8:3	D	18:4	10	18	:50	1	9:00)	19:	10	19	9:20		19:3	0	19	40	1	9:50)	20:0	00	20	0:10)	20::	20	2	20
HM-MLB	4619	4266136	9634		Å			1676 5		1	des X	5 194	\$ 942	2 / 2	seta	070	/	504	\	10		200	972	5	49	140	261	16		As	3560	J 76			Å45	Ň	268	38,86	75		400	3 7	Å2	2732		82		I	X	Xo	2			75	X	6030	7	89	9 75	<i>4</i> fi08	88	>	85		Mage	2
MLB-SÖLA	4268	6196264	533	3 /12	5/124	16	1992	594	2705	5 /5.	4410	0894	12949	368	ofa	635	504			/	2 X	92	259	514	252	*	ต่า	091		1374	D76	537	/	445	1025	4	ayas	63	$\left \right\rangle$	8167	Б	10297	732	h	082	53	39		125	8	102814	267	899	X34 C	976	110	307		8 99 8	8654	41 /4	451	0 /	265	25/	Ð
SÖLA-VÄD	4268	4801694	53	425/1	246	100	8083	125	427	051	4	3994825	head	68 07	70		151		h	250	DTP	089	12	4 62	281	256		#1998	17/13	7#107	76	53	744	500	54	ho	8099	126	416	50 \	6 4 z	5329	97	10	82	e	539	12	58	ho	1410	126	37\8	3996		978	1031	7	1856	9 /6	461	0	26:	2	109	D
VÄD-TÖ	5521	1046549	A	2512	46	1066	108	312	55/4:	270	āβs	94128	596	319 7	0	58	3 5		h2	2500	72	108	39	838	3	46	512	90	a 1877	407	6	51	445	ba 5	\$ h	078	109	15/1	68 0	1	1273	3210		79 8	2		539	125	8 1	084	111	51 /1:	267	Vae A	973	1	10	450	20-00	1977	5 41	12	262	h	090	pT
ТÖ-НÖ	552	0681	425 1	2863	40	89	1	083	12	36 4	290			2175924	1 9	6 04	53	5 12	50	, 072			6228		125	9		×3;	700) reen	љ12	1645	625	4	107	8	X	1098	X	633	12			98 26	175	5	125	89	108	34		110 [.]		260	899	734	451	008	er /	899	9762	62		(00	975	ē
HÖ-SG			86	A	363 1	253	48#	8		894 894			όθα	085	x0 9	491:	250	6	3	125	628	12	252	X ^{EOS}	89	X	59	ľ	07	1015		B	512	an	12	ene	5 9 (2!	5642	709	5/.	1263	s /	082	109	97/2	58	175	083	12	:65	/2	50	660	m	115	89		8110	320	120	899		02	269	<i>4</i> 16	34
SG-E		1204769	136	55 21	53	248	125	4	094	1068	3	1070	1554;		BEE		949		628	5/2	×		1 054	ie	X	183	$\left \right\rangle$	070	159	125	#0 9'	1/	078					21		109	5	1082	263	125	808	97 /	, 084		536	262	451		75	11	01	Xos	36 8	912	8620	320	y for		G e	614		12
E-DAT		2511079	066 \	138/	248	5894	2552	#25	3 964	619	faer	3 0/1	250	2 55	10	62	406	284	6 25		500	je.	1125	5/13	874	V	0379	s /	251	259	ľ	0981	A 1	601:		273	82/49	9171	26Б	125	f cos		1258	8263 \	ľ	1254		12	60	159		5126	56 /6	175	X	8 90	12	1226	7)	(09		39 98	889	5541	1	
DAT-Ö		125	79	22	B1 b	942	6		68	46	080		;0 4	125	SEO/II:		28	/		1500	0 5	546	6 / 1:	257	4	hà	17068	925	54	125	807	a da	081160	125	5 4 97	32	/	491	126	1\51	282	0922	58	12	638	10	97	260	451	6 33	65	0/1:	265	61	he e	810	2162	12	26170	901	400	689	B.H.S	9 554	41	
Ö-STB		(102856	079	248	136891	42 5	5344	136	825	520		1983	4		025		/ \	V			V		[257	107	8 2:	5089	9	Å	128	6	96215	6	2732	837		4	9171	280	812	58 89	95	f	082	631	dere l	944	510	5	550		12	65		BEI	101		hos		840	13/8	ober	890	5541	
STB-THL		10682	2310276	8	394	31 5	3 3	1368		V		1608			746			$ \Lambda $							12	876	54	10	089	10		899	155	h2.	'32	537			491	7108	868	2510) 95	10	84	128	6004	451	0	5	50			126	886	275	110	1 1	099	164	\$7 11	020	8 99	593	551	1
THL-LU		1066	1298	79 3	9421	381	£383			\square	Λ	5246	\V	/		Λ	X			V						hee			$\backslash l$	60 74	1	\wedge	Х			\5			ΙŇ	/ \			۱V	508		$1 \vee$				/	6 39			ſ		61	75	1/00	9010	541	267	n na	BX	<u><u></u></u>	ed de	ā4
LU-FLP				\square	7995	6 75	19688			Д	Λ		_\//		Χ/	X.	/γ		Δ	Λ	$\langle \rangle$		Λ	\mathbb{V}		M	M			\mathbf{V}	Δ	V	Y		V		X	Δ	$ \rangle$		$\Lambda/$	X		410			S	2) A	956	88	83	et			93	12	d a		16402	164	Å	86	921¢	111		L
FLP-HJP		112047873	689	285	67 91	85#3	848	\mathbf{M}		608/	13886	3520	100 AL													Λ				1602																M	28 5 1 d		Т				682				Y	1	1264			092		100	pà	
HJP-ÅKN		12480788								aba	Ge	$ \rangle$	$\Lambda \Pi$	N	M	M	۷ ۱		V	Λ	M		Ľ					X		10256								$\backslash /$		\mathbb{V}				5260	X	Λ		V			993	32/10	ae	270	9 98	768		61 121	6411	10#	9810	09122	671	11	BO	
ÅKN-ÅK		124 3 86 6						3013	506	Ð	105		X	1525								2829		83						256	084		108			86	39 5	368.	1				W	286		11	108				399	BG							4 5	101	9810)9 3 :	267	119	150 4	æ
ÅK-BLV			8941		X I	Å	N			NΤ	M		X	\mathbf{M}	VX	A V	1	M	ΝI		٨I١	١Y			/ /		N		Ν	367 1	7	93	12(0ESI	ΥŢ	9 Hors	Λ		T		ΛI				626	X				16BI	97	1000	923	eþ		Ν		90k	268			1810			VI	VI	
BLV-AL		12 4966													\mathbb{N}			11					V				1	M						W											645		366				T				608		9	426		750		2			026	
AL-MGB		1234556	\mathbb{N}	V N	YI		VI	1200			Ν	4628		X`		N	X	M	V۱			XX	$\langle \rangle /$	11	Λ	()	$ \rangle$	Λ		X		/					Λ.			Λ		X	۱V	/ \	X	Λ	۱.				١.	X	V	W	$\langle \rangle$				X		60192		126	T		87
MGB-M		1301294		¢¥	XX	865709	high	ad of the second	33 0 2	(and	An		523 /	4941	125	tude	ngla			i and	16 5/1	ioy	E	se)		876	808	126		hзxa	325	038	B \1	Xehi		er	moð	258	es/s:	¥1	Anne	20	6089	9951	X	(and a	5	676	e)/is	60	əfiq	6361	998;	s Xa			994	<u>ا</u>	126	%	191201	1	1	26	88	of 1

 Currently operational timetable contains more traffic nowadays

Timetable from Hässleholm to Malmö (4:00 PM to 9:00 PM)

An example rescheduling scenario

Trains	Disturbance location	Wall-clock time, Disturbed train		Potential conflicts	Extended runtime
107	Hässleholm:Mellby	5:40 PM, Westbound freight train	50% increase in its runtime	23	37 min

Solution	Total delay of trains at final stations	Solutions from our tailormade
Rescheduling solution 1	55 min	rescheduling algorithm
Rescheduling solution 2	48 min	

Q) How can the numerical and visual analysis of the solutions be beneficial?

Solution	Total delay of trains at final stations	Trains with secondary delay	Platform track reassignments
Rescheduling solution 1	55 min	1	1
Rescheduling solution 2	48 min	3	0

2021-12-01

An example rescheduling scenario

Trains	Disturbance location	Wall-clock time, Disturbed train (remaining events)	Initial delay	Potential conflicts	Extended runtime
107	Hässleholm:Mellby	5:40 PM, Westbound freight train 4917 (35 events)	50% increase in its runtime	23	37 min
17:40 HM-MLB MLB-SÖLA 125 SÖLA 125 125 125 125 125 125 125 125	4917.4628.109946 4628 546 4917 1091 1374 10 1 1 1 5125 546 5125 73741091 7076 1 1 125946 7374 0181091	537 A4500 A254 A078 1095 1263	4 16075 422 32 1097 1 1 1 A160 A27 32 6175 1097 1 1 1 4160 A27 32 6175 1097 1 1 1 420262 1 1 1095 1263 40 1095 1095 1022 263	disturbe	ne initially d freight periences a

An example rescheduling scenario (contd.)

- Which alternative to prefer over the other and why?
- What other KPIs are important to consider?

An alternative solution found by the algorithm:

- A smaller total final delay at stations,
- But three trains with secondary delays in their route.

Algorithm's	Algorithm's
main	alternative
solution	solution
(55 min,	(48 min,
1 train)	3 trains)

Some conclusions

- Numerical evaluation of rescheduled timetables using various KPIs is important (we proposed an evaluation framework)
- Different algorithms may be suitable for different types of disturbances (we evaluated an exact algorithm and a tailormade algorithm)
- Possible to increase the modelling detail while retaining the algorithm's speed (we increased the detail of problem model)
- Possible for the dispatcher and the algorithm to complement each other (to quickly find the best rescheduled timetables)

Thank you for the attention

Questions and Discussion

Disturbance management: Some insights from the project Blixten II

16