Disturbance management: Some insights from projects BLIXTEN I and II

Blekinge Tekniska Högskola
Karlskrona, Sweden

Real-time railway timetable rescheduling

Components and actors in advanced real-time railway network management

Source: M. Joborn, J. Törnquist Krasemann, B. Thorslund, S. P. Josyula, Z. Ranjbar, T. Liden, M. Wahlborg, "Description of a decision support tool aimed at advanced Real Time Network Management and requirements for a demonstrator", 2020. (FR8Rail II Deliverable 3.2). http://www.diva-portal.org/smash/record.jsf?pid=diva2:1510579

Some challenges

$>$ How to model the problem?
$>$ How to design and implement the algorithm?
$>$ How to analyze its applicability, strengths, and limitations?

- Rescheduling objectives

State of the practice

> Only very few examples of computer algorithms for rescheduling

- Regional lines in Italy (2011- ongoing).
\square Certain lines in Latvia (2017-ongoing).
\square A system in greater Oslo area (not in operation yet).
> In Sweden, disturbances are handled...

Research need: Evaluating algorithms

A wide range of solution approaches:

- Local rules and conflict resolution principles (e.g., FCFS)
> Various mathematical formulations solved with exact methods (e.g., using commercial solvers)
> Problem decomposition techniques:
- Decomposition in time, e.g., a rolling-time horizon
- Decomposition in space, e.g., making the decisions at different levels and solving iteratively.
$>$ Algorithmic approaches, including a combination of above.
All approaches have their own strengths and limitations!

Research need: To identify objectives and KPls

Results and conclusions from a Swedish case study

- The railway stretch between Karlskrona-Malmö, via Kristianstad and Hässleholm
- 90 sections, 42 stations
- Mixed traffic: Regional passenger trains, freight trains, long-distance passenger trains

Blekinge Kustbana

Source: Page 10 of the document Blekinge kustbana, fördjupad utredning för etapp 2 https://www.trafikverket.se/contentassets/a0 a574ba8c6743bd87cd23febdd07a98/fordjupa d utredning trafikverket bkbe2 signerad.pdf

Train timetable

Timetable from Karlskrona to Kristianstad (4:00 PM to 9:00 PM)
$>$ A calibrated version of the train timetable from October 2016 for a weekday.

Train timetable (contd.)

Timetable from Hässleholm to Malmö (4:00 PM to 9:00 PM)
$>$ Currently operational timetable contains more traffic nowadays

An example rescheduling scenario

Trains	Disturbance location	Wall-clock time, Disturbed train	Initial delay	Potential conflicts	Extended runtime
107	Hässleholm:Mellby	$5: 40$ PM, Westbound freight train	50% increase in its runtime	23	37 min

Solution	Total delay of trains at final stations
Rescheduling solution 1	55 min
Rescheduling solution 2	48 min

Q) How can the numerical and visual analysis of the solutions be beneficial?

Solution	Total delay of trains at final stations	Trains with secondary delay	Platform track reassignments
Rescheduling solution 1	55 min	1	1
Rescheduling solution 2	48 min	3	0

An example rescheduling scenario

Trains	Disturbance location	Wall-clock time, Disturbed train (remaining events)	Initial delay	Potential conflicts	Extended runtime
107	Hässleholm:Mellby	5:40 PM, Westbound freight train 4917 (35 events)	50\% increase in its runtime	23	37 min

Total final delay = 55 min, Number of trains with a secondary delay = 1

An example rescheduling scenario (contd.)

- Which alternative to prefer over the other and why?
- What other KPIs are important to consider?

An alternative solution found by the algorithm:

- A smaller total final delay at stations,
- But three trains with secondary delays in their route.

Algorithm's main solution	Algorithm's alternative solution
(55 min,	(48 min,
1 train)	3 trains)

Some conclusions

$>$ Numerical evaluation of rescheduled timetables using various KPIs is important (we proposed an evaluation framework)
> Different algorithms may be suitable for different types of disturbances (we evaluated an exact algorithm and a tailormade algorithm)
> Possible to increase the modelling detail while retaining the algorithm's speed (we increased the detail of problem model)
>Possible for the dispatcher and the algorithm to complement each other (to quickly find the best rescheduled timetables)

Thank you for the attention

Questions and Discussion

